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We consider the equilibrium dynamics of a system consisting of a spin 
interacting with an ideal Fermi gas on the lattice Z v, v/> 3. We present two 
examples: when this system is unitarily equivalent to an ideal Fermi gas or to a 
spin in an ideal Fermi gas without interaction between them. 
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1. I N T R O D U C T I O N  

This se l f -contained pape r  is the th i rd  in a series of papers  1~'2) devo ted  to a 
p r o o f  of the i s o m o r p h i s m  between local ly  pe r tu rbed  dynamics  and free 
dynamics .  A par t ic le  in terac t ing  with an ideal  gas can be imagined  as a 
local  p e r t u r b a t i o n  of  the free system consis t ing of  the par t ic le  and  the ideal 
gas wi thou t  mu tua l  in te rac t ion  between them. Unt i l  now there was only 
one e x a m p l e - - a  classical  par t ic le  in terac t ing  with a classical gas on the 
ha l f - l i ne - -where  the equivalence  with the ideal  gas was p roven  I3~ (the 
me thods  resemble  those  of  Ref. 2). 

Here  we cons ider  an  ideal  Fe rmi  gas on the lat t ice and  a spin 
(s i tuated,  e.g., a t  the po in t  0 e Z v ) .  This system (due to experience 
e l abo ra t ed  in Ref. 1) seems to be the s implest  system for reveal ing the 
spectra l  reasons  for the existence of equivalence  between in terac t ing  and 
free systems. 

O u r  first result  (Theorem 4) concerns  the case when our  system is 
equiva lent  to an ideal  gas. Here  the spin "d i sappears"  in the Fe rmi  sea; this 

t Institute of Information Transmission Problems, Moscow, USSR. 
2 Department of Mathematics and Mechanics, Moscow State University, Moscow, USSR. 

51 

0022-4715/87/0700-0051505.00/0 �9 1987 Plenum Publishing Corporation 



52 Aizenstadt and Malyshev 

situation is similar to that in Ref. 3. We give the spectral explanation of this 
phenomenon: the eigenvalue becomes the resonance. 

The second result (only for quadratic perturbations) concerns the case 
when our system is equivalent to an ideal gas plus a free quasiparticle. 

2. M Q L L E R  M O R P H I S M S  IN C A R - A L G E B R A  

Here we put the main result of Ref. 1 into a more general setting. 
Let J f  be the complex, separable Hilbert space and gg = ~ ( H )  the 

CAR-algebra over J{. It is the C*-algebra with { generated by a*(f), a(f), 
f e  afsatisfying 

a*(f)  a(g) + a(g) a*(f)  = (f, g){ 

a( f )  a(g) + a(g) a ( f ) = 0  
(2.1) 

We use the convention that (f, g) is linear in f 
For any self-adjoint operator H in Jr one can define the "free" 

dynamics, i.e., the strongly continuous group t ,  of *-automorphisms of #g, 
by 

t , (a(f)  ) = a(dm f )  (2.2) 

If V= V*e gg, then one can define the perturbed dynamics (4t 

n - - I  t > ~ S n ~  - - "  ~>Sl~>O 

• Ets~(V) ..... [ts,(V), t , (A)] -.-], A egg (2.3) 

The infinitesimal generator of this group is given by 

6v=  6o + iFV,-] (2.4) 

where 6o is the infinitesimal generator of ~,. We shall consider direct, 

7+(A)= lira ~ ,(t,(A)) (2.5) 
t ~  -1-oo 

and inverse Mr morphisms 

? + ( A ) =  lira 
t ~ ! c c  

t ,(tV(A)) (2.6) 

if they exist. 
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T h e o r e m  1. Let the following conditions hold: 

(a) There exists the dense set ovf o c ~4 ~ such that for any f ,  f ' � 9  ~0 

(eimf f ' ) � 9  oo) (2.7) 

(b) V= V* is defined as the finite sum of monomials 

a*( f  l) .. . a*(fm) a(gl) . "  a(g,) (2.8) 

where n + m is even and f, ,  gj �9 ~o. 
Then there exists eo=eo (V)>O such that for V=eV, le[ <eo,  Mr 

morphisms (2.5) and (2.6) exist. It follows that, e.g., 

(2.9) 

Proof. The proof is a modification of the proofs of Theorems 1 and 2 
in Ref. 1. 

To prove the existence of the direct Mr morphism, it is sufficient to 
prove the existence of the dense subset d o  ~ ~ such that for any A �9 d o  

rl Fz,(A), VIII �9 L I ( -  oo, ~ )  (2.10) 

Let us choose 

d o  = { a * ( f l ) . - - a * ( f ~ )  a (g l ) ' "  a(g,), 

m>~O,n>~O, fi,  g j � 9  (2.11) 

Then, if A = a( f ) ,  we use the formula 

[a(e"H f ) ,  a*( f  1 ).-. a*(f,,,) a(g 1 ) . . .  a (g , ) ]  

= ~ ( - 1 Y  l(fj, e, ,Hf)a*(f~) . . .5*(f;) . . .a*(f , , )  a(g l ) . . .a(g , )  
j =  I 

(2.12) 

where v means the missing of a*(fj). We note that (12) is valid only for 
m + n even. 

A similar formula is valid for A = a*(f). For general A �9 d o we use 
the identity 

[AB, C] = A[B, C] + [A, C ]B  (2.13) 

several times. 
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To prove the existence of the inverse Moller morphism, it is sufficient 
to prove that  for any A e ~ o  

[I I-A, ~,v(V)]II s L~(0, oo) 

Again we restrict ourselves to the case A = a(f). Then 

I111, r v ( f ) ] l l  dt<~ II[A, r,(V)]H dt 

+ ~ f " f  dSl . . .dS k 
k = l  0<SI~< ... < ~ S l < ~ t < c  ~ 

x IliA, [rsl(m) ..... [~s~(g), r , (V)]  ...]11 (2.14) 

Let us put V = s ~ ) =  1 V~, where 

V i = a*(f[)...a*(YJm) a(g{)...a(g~,) (2.15) 

Let 
L 

M =  H.fN + ~ ~ l~I L]f,.]] ]]gk]l 

where the sum is over all !/_~ {1 ..... m/}, J / ~  { 1,..., n/}; and 

L L 

Sj = {f(,...,f;{,/, g{,..., g,~,}, S= U S/, IS] = ~ (m/+nj) 
j = ]  i = 1  

Then 

(2.16) 

[] [a(f), . . . ,  [Zs,(V), T,(V)]---]  H 

~< C,~+ 1 L n +  aM,,+ 1 X(j)X(h) 

x [(f, [exp(iSjoH)] hg)l 121 I([exp(iS~H)] h,, [exp(iS~)]h't)[ (2.17) 
l=1  

where the sum X lh) is over all ISI 2~+1 ordered sequences h~, 
hl,h],...,hn, h',, where h~,h~S. The sum X I j/ is over all sequences 
(Jo, Jl,--., J ,)  such that  for all d =  0, 1 ..... n: 

(1) d<ja<.n+l  (we also specify S , , + l = t ) .  

(2) Jd can be equal t o / f o r  any 1 <~l<<.n+ 1 at most ISI times. 

In the remaining part  of the proof (if is quite similar to Ref. 1) one uses 
only the fact that  

]([exp(iS,H)]f, [exp(iSj, H)]g)[ =-B(S,-Sj)~LI(O, oo) (2.18) 
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3. Q U A D R A T I C  P E R T U R B A T I O N S  

Any self-adjoint, finite sum of quadratic monomials in ~ with the 
conservation of the number of particles can be represented as 

V= s (+) a*(f,.)a(f,.) (3.1) 
i = l  

up to a constant. 
Let us put for some fl,..., f ,  

P(f~) g = (g, f , ) f i ,  P = s P(f,.) (3.2) 
i = 1  

L e m m a  1. Let V be given by (3.1). Then the dynamics (2.3) IS a 
free one and can be represented as 

rV(a(f)  ) = a(eitiH + e) f )  (3.3) 

Proof. Easy calculation shows that [see (2.4)] 

6 v(a(g)) = a(i(H + P) g) 

Then (3.3) follows. 
We shall not pursue the case when V does not conserve the number of 

particles. 

4. T H E  M A I N  R E S U L T S  

Let 6~(12(gv)), v ~> 3, be the CAR-algebra of the lattice Fermi gas and 
~ ( C )  be the finite-dimensional CAR-algebra generated by { 1, b, b* }. 

The latter algebra describes the spin and b, b* satisfy the standard 
anticommutation relations. The tensor product of these superalgebras (in 
the sense of superalgebras) is again the CAR-algebra 

generated by 1, b, b*, a( f ) ,  a*(f) ,  f e/2(Zv). We denote for convenience 

b = a(~po), @o= ( ~ )  E C ~ / 2 (  ~zv ) 

The free dynamics in a" is defined by 

v, (a( f ) )=a(Eexp(i t f f I )] f ) ,  z , (b)= [exp(irt2)]b, 2 e C  
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where / 1=  - A  + #4 is the lattice Laplacian plus constant. Let C0sp be the 
ground state on 6((C) and a~g~ be the ground or temperature state on 
6((/z(77~)), which are equilibrium with respect to the free dynamics. 

Then the free Hamiltonian in the GNS representation with respect to 
(D O = (Dsp @ O)gas is 

Ho(2) = H~r,| 4 +4 |  (4.1) 

where 

H 0 sP=(0 
acts in C 2 and Hgas is written down explicitely in Ref. 1 and acts in the 
Fock space or in the Fock-tensor-anti-Fock space. 

In the sequel we shall consider the particular cases of the following 
general situation: let the C*-algebras 6( and 6(' be given. Let rt and ~ be 
the dynamics on them. Let o9 be the ~,-invariant state on 6(. Let there exist 
*-isomorphism ~: 6(--+ 6(' such that 

~, = ~-l~;c~ (4.2) 

Our main task will be to prove the existence of e in some cases. The 
following easy proposition allows us to obtain the spectral information 
from this fact. 

k e m m a  2. If we denote (o '=coo~ -I (the state on 6(') then it 
follows from (4.2) that the GNS Hamiltonians Ho~ and H~,, are unitarily 
equivalent. 

First we consider the general case of isomorphism between two free 
dynamics. 

Let 6 (=6( (0g)  and 6( '=6( (0g ' )  be two CAR-algebras, ~ t (a ( f ) )=  
a(e"Uf), f e ~ ,  be the free dynamics on 6(, and let co be the quasifree 
r,-invariant state on 6(, defined by (see Ref. 1) 

co(a*(f,,) . . .a*( f~)a(gl) . . .a(gn))=b,mdet((Bf j ,  gi)) (4.3) 

where B is the linear operator in aeg 

B = B ( H ) = e x p ( - ~ H ) [ 4  + e x p ( - / ~ H ) ]  -1, 0~</~< oo (4.4) 

Let us fix some unitary operator U: ~- -+  Jt ~' and put 

H'= UHU -1, r;(a(g))=a(eetH'g), g ~ '  

~o'(a*(f~)...a*(f()a(g'l)...q(g'n))=C~m, det((B'fj', g;)) (4.5) 

f f ,  g~ ~ ae{ '', B' = UBU 
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We get now the isomorphism (4.2) between r, and < if we put 

e(a(f)) = a(Uf) (4.6) 

etc. 
Now we proceed to a particular example: the quadratic interaction of 

a spin and an ideal Fermi gas 

Vu = e(b*a(f) + a*(f)b ) 

for some f e  12(Z ~) with finite support. 
Then, using Lemma 1, we have 

LV~(a(G))=a(emH+e)G), G ~ C |  ~') 

H= H(2)=)A ~)FI 

PG = e(P((0, f )  + (00) - P((0, f ) )  - P(cpo))G 

= 8((G, (po)F+ (G, F)cpo) 

F= (0, f )  

(4.7) 

(4.8) 

Lemma 3. Let f be of finite support on Z" and its Fourier trans- 
form f be not identically zero on any level surface of the function 

v 

u(k )=  ~ 2 ( 1 - c o s k i ) + # e C ~ ( T  ") 
i = 1  

T =  [0, 2rr), k = (kl,..., kV). Then there exists %(Vq) > 0 such that for lal < eo 
the operators H(2) + P and D are unitary equivalent if 2 e (#, # + 4v), i.e., 2 
belongs to the interior of the spectrum of H. 

I_emma 4. If 2 ~ (#, # + 4v), then H(Z) + P is unitary equivalent to 
H(2') for some real number 2' such that 

I ; . - , v t  = o(1~12) 

The proofs of these lemmas are given in the Appendix. 
Theorems 2 and 3 stated below concern the case of quadratic interac- 

tions, and Theorem 4 that of nonquadratic one 

T h e o r e m  2. Under the conditions of Lemma 3, there exists an 
isomorphism c~: ~ ( C  | 12(~")) ~ ~( l l (Zv))  such that 

~zV~(A) = z,(c~(A)), A ~ dg(C (~/2(Zu)) (4.9) 

and ~, is the free dynamics of the ideal gas. 
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ProoL 

U: C ~)/2(7/v) ~/2(7/v), 

It exists by Lemma 3. Let us put 

c~a( G) = a(UG), 

Then 

Aizenstadt and Malyshev 

Let U be the unitary operator such that 

U(H + P) U -1 = ffI 

ctrV~(a(G)) = ota({exp Eit(H + P)]  } G) = a(U{exp[i t (H + P) ]  } G) 

= a( [exp( i tH)]  UG) = ~,(c~(a(G))) (4.11) 

fi'cv~f1-1 =z', (4.12) 

Lemma4,  there exists an 

z;(a(G) ) = a(em4~;")G) (4.13) 

Let us consider now the nonquadratic perturbation 

V= Vq + e'~" (4.14) 

where V= V* is the finite sum of monomials 

a*(F1) ... a*(Fm) a(G1).. ,  a(Gn) 

with n + m even and Fi, Gj ~ C @ 12(Z v) having finite support. 

T h e o r e m  4. Under the conditions of Lemma 3, there exists e~ > 0  
such that for I~'1 < ~ the dynamics z v is isomorphic to the free dynamics r, 
of the ideal Fermi gas. 

Proof. By Theorem 2 it is sufficient to prove the isomorphism of r S 
and r~v~. This will follow if we prove the existence of Mr morphisms 

7 + ( A ) =  lim zvt('ctVq(A)) 
t ~ + o o  

~_+(A)= lim rv~,(rV(A)) 
t ~  + o O  

To prove their existence, we shall use Theorem 1 with "Ct Vq instead of z, in it. 

where 

G E C �9 12(Z v) (4.10) 

Quite similarly, we get the following: 

T h e o r e m  3. Under the conditions of 
automorphism fl of 6~(C O/2(Zv)) such that 
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By (2.7) it is sufficient to verify that 

(e i'(H + e~ F, G) ~ L l ( - -  oc, oe) (4.15) 

for F =  (cl, f )  and G = (c2, g) e C �9 with f, g having finite support. 
This will be proved in the Appendix (Lemma A4). 

A P P E N D I X ,  I N V E S T I G A T I O N  OF  T H E  F R I E D R I C H S  M O D E L  

Here we give the proofs of Lemmas 4 and 5 and of the condition 
(4.15). This is reduced of course to the investigation of the operator h in 
the Hilbert space C �9 L2(T"), 

where 

c6C,  g6L2(T  ~') 

u =  ~ 2 ( 1 - c o s k i ) + ~ , k i e  [0,2~) 
i ~ l  

and ~0 is the Fourier transform of the function f e  12(7/~'). This is the well- 
known Friedrichs model.(l~ 

So 
h = h o  + e V  (A2) 

where 

<;) ,13, ho = ug 

and the perturbation V has rank 2. 
The operator h o has an absolutely continuous spectrum on 

[# , /~+4v] ,  an isolated eigenvalue at the point 2, and no (continuous) 
singular spectrum. 

We shall prove that: 

(a) If 2 lies outside or on the boundary of [#, g + 4v], then under 
the perturbation e V with e sufficiently small the absolutely continuous 
spectrum does not change, a singular spectrum does not appear, and there 
is a small shift of the eigenvalue 2. 

(b) if 2 e (#, # + 4v), then under some conditions on V (or on the 
function ~o) the discrete spectrum dissappears and the continuous spectrum 
does not change. 
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Lemmas 4 and 5 follow from (a) and (b). We note first that since eV 
has rank 2, then it is well known (5) that absolutely continuous parts of the 
spectrum of h and ho are unitarily equivalent. 

The Discrete Spect rum of h 

The eigenvalue of h, if it exists, can be taken as (~) or (~,). 
First we consider the case of (~) with the eigenvalue 2'. Then we get 

from (A1) 

u(k) ~(k) = 2'~9(k) (A4) 

So O(k)= 0 a.e. and this case cannot happen. 
1 _ _  t 1 In the case h ( ~ ) -  2 (~) one has 

Then 

2 + e jT ~p(o dk= 2' (A5) 

eq~ + u~ = 2'~9 (A6) 

= -e~o/(u - 2') (A7) 

If ~ '~ [#, ~t+4v], then ~ L 2 ( T  ~) and the substitution of (A7) into (A5) 
gives the equation 

~2f  [~~ 2 =~ ,  
2 -  @ -~--~ dk (A8) 

If 2 ~ (/~, # + 4v), it is easy to prove [see the similar proof below for F(2')] 
that Eq. (A8) for small ~ has the unique solution 2' and moreover 

2 ' # [ / ~ , # + 4 v ] ,  12'--21=O(lel =) 

Let 2e  (#, # +4v). Here we need the condition on ~0: let q) be a smooth 
function on T ~ not identically zero on any subset of the form 
{K: u(k)= const} (later this is called condition A) (e.g., cp =_ 1). Then, for 
2 'e  (/~, # -  4v), 

~o/(u - ,~') ~ L2( T ~) 

For small e Eq. (A8) has no solutions. In fact, the function 

F()o') deff [~~ dk 
= T~77- ~ 
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is smooth on S = R I \ [ # , # + 4 v ] ,  F ( 2 ' ) ~ 0  if 2 ' ~  +0% and has finite 
limits if 2' ~ # from the left or 2' ~ # + 4v from the right. So F(2') is boun- 
ded on S, and choosing e, we can make le2F(')l as small as we want .But  

12-Z ' l  ~> min(IZ-/~[,  1 2 - # - 4 v l ) > 0  

So (AS) has no solutions 

The Absence of the (Continuous) Singular Spectrum 

L e m m a  A] .  Let either of the following conditions be satisfied: 

1. 2 e RI\(/~,/~ + 4v), q) e C ~ ( T  v) 

2. 2e(p ,~L+4v) ,  ~0~C~176 ~') 

and ~0 satisfies condition A. 
Then h has no singular spectrum for sufficiently small ~. 
To prove this theorem and condition (4.15), we shall use the following 

well-known facts. 
Let d# be finite positive measure on R 1 with the support in (a, b) and 

v~,(x) =- v(x, y) = f P , , ( t - x )  d~(t) 

1 y 
P ~ . ( t - x ) =  y2, y > 0  

~z ( t _  x)2 + 

Lemma A2. (a) (Ref. 12.) Let v.,,(x) tend to p(x ) eL l (a ,  b) when 
y --, +0 in the Ll(a, b)-norm. 

Then/~(t) is absolutely continuous and dl~(t)= p(t)dt.  

(b) (Ref. l l.) If /~(t) is absolutely continuous and d#( t )=p( t )d t ,  
p ( t ) eC(R l ) ,  p(t) = 0  for t~ [a, b]. 

Then v.v(x ) tends to p(x) when y --, +0  uniformly on [a, b]. 

Proof  o f  Lemma A 1. The essential spectra of h and ho coincide. So 
the singular spectrum of h belongs to [#, # + 4v]. Let Ex be the spectral 
family for h. It is sufficient to prove that for a dense subset of vectors F the 
restriction of the measure (ExF, F) onto [/~, # + 4 v ]  is absolutely con- 
tinuous (with respect to Lebesgue measure). Let us put for z = x + iy, y > O, 

R ( z )  = RF(Z ) .--= ((h - z ) - 1 F ,  F)  (A9) 



62 Aizenstadt and Malyshev 

F will be specified later; and define measure #(t) by 

v(x, y) ~f 7r -1 Im R(z) = 7z 1 f I m ( t _ z ) - i  d(E,F,F) 

Y = rc -~ | d(EtF, F) ( t - x )  2 + y d 
(A10) 

The calculation of the resolvent 

gives 

Let 

U - - Z  

(Al l )  

S is dense in C@L2(T~'). Let us put for convenience 

~--('/')- I~, ,/,(k) u(k)_------Tdk (AI2) 

for any ~ ~ C~(T') ,  I m z > O .  Let us fix some F = ( ~ ) ~ S ,  z = x + i y ,  y>O.  
Then 

Z _  z _  ~2~b,(1~ol2) (A13) 

Lernma A3. For any tp~C~(T~), v>~3, z = x + i y ,  y > 0 ,  and any 
x e [#, # + 4v], the following limit exists: 

lim ~bx+~v(O) de f ~,c+0i(@) (A14) 
_v~ + 0  

and, moreover, the convergence is uniform on [#, # + 4v] and Fx+ 0i(I]/) E 

C[#, # + 4v]. 
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P r o o f .  We can write 

~bz(0)= u ( k ) - z  = _ ~  t - z  

where J(t)=-Jo,.(t ) is the Gelfand-Leray function. (7'8) We shall use the 
following well-known properties of this function(7'8~: 

1. J(t)eC~176 ) 
2. J(t)=-O, t e R l \ ( p , p + 4 v )  
3. IJ(")(t)[ . .~A~(t-#)  (v/2-1)-", t--+#+O 

[J"(t)l ~ B , , ( # + 4 v - t )  (v/2-1)-', t--+/.z+ 4 v - 0  

n =0 ,  I, 2 ..... and A., Bn are some constants. We have 

= (t-x)J(t)dt yJ(t)dt 
0 

For v >i 3, J(t) is continuous and it follows from Lemma A2(b) that the 
second summand in (A15) uniformly on [ # , # + 4 v ]  tends to i=J(x) if 
y--+ +0. 

Let us prove that the first summand uniformly on R 1 tends to the 
Hilbert transform of J(t), that is, to 

i o J(x + t) - J(x - t) dt GJ(x) (A16) 
J o  t 

It is easy to see that J(t) satisfies the Lipshitz-H61der condition for any 3, 

IJ(t + 3) - J(t)l <<. c tal 1/2 (A17) 

So (A16) is correctly defined. We have 

de_f foO ( t -  x) J(t) dt f~o t[J(x + t ) -  J(x--  t)]  V j( X~ Y) tr_; 7 dt 

Using (A17), we get 

;~ y2 (jj(x_}_t)_J(x_t!)dt 
[vj(x, y) -- GJ(x)[ = t2 + ya t 

( ( ~ y 2 t - l / 2 d t ) = o ( 1 )  (AlS) 
= O k J  0 t2 + y 2 
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So we have proved that ~bx+~y($ ) uniformly on [a, b] tends to 

~bx + io(6' ) = GJg,(x) + ixJ~,(x) (A19) 

Since J~(x) satisfies the Lipshitz-H61der condition (A17), then (see 
Ref. 13), GJ~,(x) satisfies the Lipshitz-H61der condition with the exponent 
1/2. So ~b~+io(~b ) is continuous. 
$ e C~(T~), v~>3, 

lim R(x +iy)=Ox+,o(t@12)~ 
3"~ +0 

LemmaA3 is proved. So, for any 

;~- x-~r 2 ) 

~r R(x + iO) (A20) 

exists. Let us prove that this convergence is uniform on any interval 
[a, b] ~ (/~,/~ + 4v). 

In fact, if condition 2 of Lemma AI is satisfied, then the imaginary 
part -e27tJle12(x) of the denominator in (A20) is not equal to zero. If the 
condition 1 of Lemma A1 is satisfied, then the real part Z-x-e2GJl~12(x) 
of the denominator is not equal to zero. 

Due to the uniform convergence of ~bx+0.(~), Y ~  +0, we have the 
desired uniform convergence. LemmaA2(a)  shows that (ExF, F) is 
absolutely continuous on any [a, b] ~ (#,/~ + 4v), and, moreover, 

p(x) = 7z l lmR(x+iO)  (A21) 

Lemma A1 is proved, since/~ and p + 4v are not eigenvalues of h. 

The Proo f  of  C o n d i t i o n  (4.1 5) 

L e m m a  A4. Let condition 2 of LemmaA1 be satisfied and ~Jl ,  

O2e C~(T"), v>~ 3. Then, for sufficiently small e, 

, - B ( t ) e L l ( - ~ ,  o0) (A22) 
~1 qJ2 

By the polarization identity it is sufficient to Proof of Lemma A4. 
prove (A22) for 

We have 

(eiShF, F) = f eiSX p(x) dx (A23) 
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where p(x) is given by (A21) in [~, # + 4v] and is equal to 0 outside of this 
interval. 

To estimate the oscillatory integral (A23), we need the following. 

l . e m m a  A5. Let f ( x )  ~ C2(0, a],  f ( 0 )  = 0, f ( x )  ~ C[0, a],  
f ("~(a)=0,  n = 0 ,  1, 2. Let us suppose also that for x ~ 0 ,  (i) If'(x)l = 
O(x-6), (ii) tf"(x)[ = O ( x  -6 -1 )  for some 6, 0 < 6 <  1. Then 

U(s )=  eisXf(x) d x ~ L l ( - O o ,  or) (A24) 

Proof of Lommo AS. Let 61~(0, 1 - 6 ) ,  h(x)= x ~-alf'(x). 
Integrating by parts, we get 

l e , ,  1 ~ - 
= - - ~  eiSXx~ dx U(s) = ---- J0 eiSXf'(x) dx (A25) 

is is Jo 

It follows from (i) and (ii) that h(x) is of bounded variation on [0, a]. 
So Lemma A5 follows as by Theorem 2 of Ref. 9: 

[U(s)l = O(Isl 1-61) (A26) 

To use this lemma, we must investigate the behavior of p', p" in the 
neighborhood of the points/z and/~ + 4v. To this end, we shall study the 
behavior of functions ~bx+io($), which exist by Lemma A3. 

k e m m a  A 6 .  The function ~b(x)--~bx+i0(~ ) satisfies the following 
properties (n = 1, 2): 

(1) ~(x)eC2(#,Iz+4v), qk(x)~C[g,#+4v] 

(2) I~")(x)l = O ( ( x -  #)m ~), x >t~, x--, # (A27) 

Ifb(~)(x)l=O((t~+4v-x)l/2-~), x <~t+4v,  x--+#+4v 

Proof of Lornma ,46. Continuity of ~b(x) was proved in Lemma A3. 
By (A19) we have 

O(x) = GJ(x) + inJ(x) (A28) 

where J ( x ) -  Jo(x) is the Gelfand Leray function. 
From the properties 1-3 of Jo(x) indicated in the proof of Lemma A3 

it follows that (n ~> 0) 

( a )  J(x) e C~(#,  # + 4 v ) ,  J(x) ~ C[g,  t~ + 4v] 

(b) IJ(~)(x)l = O ( ( x -  #)~/2-.), x >/~, x--*/~ (A29) 

IJ(~)(x)l-=O((l~+4v-x) 1/2 ~), x < / ~ + 4 v ,  x--+~+4v 

822/48/1-2-5 
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So it is sufficient to prove that GJ(x) satisfies the properties 1 and 2 of 
Lemma A6. 

Using the C~-part i t ion of the identity, one can assume that (we put 
# = 0 for convenience) for some a > 0 

(a') J(x)~ C~ a) 

(b') I j (n ) ( x ) l____O(x l /2 -n ) ,  x ~ +O, n>~0; J(n)(a) = 0, n>~0 

(A30) 

Let us prove that GJ(x) is differentiable on (0, a). We shall use the 
following simple result: 

k o m m a  A7. If the function x f (x )  has a derivative in Xo ~ 0 ,  then 
f ' (xo)  exists and 

f , (xo)  =--1 [(xf(x)) '][ . . . . .  0 - f ( x 0 ) ]  (A31) 
x0 

Now we use the identity 

xGJ(x) = G ( x J ( x ) ) -  J(t) dt (A32) 

Since x J ( x ) ~ C l ( R  ~) and xJ(x) is identically zero outside (0, a), then 
G(xJ(x)) ~ C ~ (R ~ ) and 

d 
dx (G(xJ)(x)) = G(xJ'(x) + J(x)) 

= G(xJ ' ) ( x )  + GJ(x )  (A33) 

It follows from (A32) that xGJ(x)~C~(R~). So, by LemmaA7,  
GJ(x) ~ C1(0, a), and 

(GJ)'(x) =-l E(G(xJ))'(x) - GJ(x)] 
x 

1 
= - G(xJ')(x) = GJ'(x) (A34) 

x 

In the second equality we used (A33), and in the third we used (A32) for 
J ' (x) .  

Let us suppose that for x ~ +0 

l(GJ)"(x)[ = O ( x  -1/2) (A35) 

Since the asymptotic behavior of xJ'(x) and J(x) for x ~ +0  are the same, 
there exists I(G(xJ'))'(x)l = O ( x  -1/2) for x ~ +0. 
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But, by (A34), 

x( GJ) ' (x)  = G(xJ ' ) (x )  

Then by Lemma A7 there exists (GJ)"(x)  for x :~ 0, 

I(GJ)"(x)[ = 1 ( ( G ( x J ' ) ) ' ( x ) -  (GJ) ' (x)  = O(x -3/2) 

Now we must prove (A35). We have 

f ~  J~(x + t) - J ' ( x  - t) dt (GJ ) ' ( x )  GJ'(x)  (A36) 
: o  t 

Let us divide the integral (A36) into three integrals: 

GJ'(x)  = + + (A37) 
";0 x/2 

We have the following estimates for these integrals 

x/2 J t ( x  --~ t )  - -  J t ( x  - t) = 0 (x -- t)-3/2 dt = O(x-1/2) (A38) 
~o t 

x J ' ( x + t ) - J ' ( x - t )  <<. [ J ' ( x + t ) - J ' ( x - t ) [  dt 
,c/2 t x/2 

4 f~ <<.- I f ( x -  t)[ dt = O(x -1/2) (A39) 
X x/2 

( ; ' )  = 0 t(X + 01/2 d t =  O(x 1/2) (A40) 

We changed the variables in the last integral, 

x t ( x + t ) l / 2 d t = ~  I t ( l + t )  1/2dt 

Lemma A6 is proved. 
Recall that the density of the measure (ExF, F ), F =  (~), on [#, # + 4v l 

is equal to 

p(x)=llm(~x+iO([OI2)-~ [c--eOx+i~176176 ./ (A41) 
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Using Lemma A6, it is easy to verify that 

(1) p ( x ) E C 2 ( # , # + 4 v )  

(2) Ip~')(x)l=O((x-~)l/2-n), 
Ip"(x)] = O( (Ix + 4v - x)  ~/2 -") ,  

x - - * # + 4 v ,  n = l , 2  

To 
identity and Lemma A5. 

x > [ t ,  x ---~ ~ 

x < # + 4v (A42) 

end the proof of Lemma A4, one must use the C~176 of the 
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